

MEMBER COMPANIES

Clean Harbors Environmental Services Dow Chemical U.S.A. E. I. Du Pont de Nemours Eastman Chemical Company INVISTA S.àr.l. 3M Ross Incineration Services, Inc. Veolia ES Technical Services, LLC

GENERATOR MEMBERS

Eli Lilly and Company

ASSOCIATE MEMBERS

AECOM B3 Systems Compliance Strategies & Solutions Coterie Environmental, LLC Focus Environmental, Inc. Foster Wheeler USA Franklin Engineering Group, Inc. METCO Environmental, Inc. SAIC SGS Analytical Perspectives, LLC Strata-G, LLC TestAmerica Laboratories, Inc. TRC Environmental Corporation URS Corporation

INDIVIDUAL MEMBERS

Ronald E. Bastian, PE Ronald O. Kagel, PhD

ACADEMIC MEMBERS

(Includes faculty from:)

Clarkson University Colorado School of Mines Lamar University Louisiana State University Mississippi State University New Jersey Institute of Technology Rensselaer Polytechnic Institute University of California – Berkeley University of Dayton University of Maryland University of Maryland University of Utah

44121 Harry Byrd Highway, Suite 225 Ashburn, VA 20147

Phone: 703-431-7343 E-mail: mel@crwi.org Web Page: http://www.crwi.org

What are the current standards for hazardous waste combustors?

The current standards for new and existing hazardous waste combustors are found in the following tables. A new hazardous waste combustor is defined as a source that started construction or reconstruction after April 20, 2004. All other sources are considered to be existing sources. Each table will have the Code of Federal Regulations (CFR) citation for those standards. For the following tables, SVM means semi-volatile metals (lead and cadmium) and LVM means low-volatile metals (arsenic, beryllium, and chromium). Each combustor can meet either a carbon monoxide (CO) or a total hydrocarbon standard (THC). For the dioxin standards designated with **, there were not enough data on which to develop numerical standards. The 2005 rule requires that these facilities do a one-time test for dioxin emissions during their initial performance test. EPA has indicated they will use the results from that testing in future rulemaking.

Solid fuel-fired boilers (40 CFR 63.1216)

Pollutant	<u>New</u> Existing	
Dioxin (ng TEQ/dscm)	**	**
Mercury (µg/dscm)	11	11
SVM (µg/dscm)	180	180
LVM (µg/dscm)	190	380
CO/THC (ppmv)	100/10	100/10
Total chlorine (ppmv)	73	440
Particulate matter (mg/dscm)	34	68

<u>Liquid fuel-fired boilers</u> (40 CFR 63.1217). This subcategory is further divided into a high Btu sub-subcategory and a low Btu sub-subcategory. The low Btu sub-subcategory is defined as firing a fuel with less than 10,000 Btu/lb and have standards normalized to stack gas concentrations (μ g/dscm). The high Btu sub-subcategory units are defined as firing a fuel 10,000 Btu/lb or greater and have standards normalized to the Btus of the fuel (lb/MM Btu).

CRWI HWC MACT standards

High-Btu sub-subcategory

Pollutant	New	Existing
Dioxin (ng TEQ/dscm)	0.40*	0.40*
Mercury (lb/MM Btu)	1.2 X 10-6	4.2 X 10-5
SVM (Ib/MM Btu)	6.2 X 10-6	8.2 X 10-5
LVM (Ib/MM Btu)	1.4 X 10-5	1.3 X 10-4
CO/THC (ppmv)	100/10	100/10
Total chlorine (lb/MM Btu)	5.08 X 10-2	5.08 X 10-2
Particulate matter (mg/dscm)	34	80

* For dry air pollution control systems, for wet air pollution control systems, the onetime test only.

Low Btu sub-subcategory

New	<u>Existing</u>
0.40*	0.40*
6.8	19
78	150
12	370
100/10	100/10
31	31
34	80
	<u>New</u> 0.40* 6.8 78 12 100/10 31 34

* For dry air pollution control systems, for wet air pollution control systems, the onetime test only.

Hydrochloric acid production furnaces (40 CFR 63.1218)

<u>Pollutant</u>	<u>New</u>	Existing
Dioxin (ng TEQ/dscm)	**	**
CO/THC (ppmv)	100/10	100/10
Total chlorine (ppmv/SRE*)	25/99.987	150/99.923

* SRE is system removal efficiency. An SRE of 99.987 means that the air pollution control system has removed 99.987% of the chlorine fed to the unit.

CRWI HWC MACT standards

Hazardous waste incinerators (40 CFR 63.1219)

<u>Pollutant</u>	New	Existing
Dioxin (ng TEQ/dscm) dry APCD	0.11	0.20
wet APCD	0.20	0.40
Mercury (µg/dscm)	8.1	130
SVM (µg/dscm)	10	230
LVM (µg/dscm)	23	92
CO/THC (ppmv)	100/10	100/10
Total chlorine (ppmv)	21	32
Particulate matter (gr/dscf)	0.0015	0.013

<u>Hazardous waste cement kilns (40 CFR 63.1220)</u>. For this subcategory, both the feed standards and the stack gas concentration standards for mercury, SVM, and LVM apply. This is an "and" standard, not an "or" standard.

Pollutant	New	Existing
Dioxin (ng TEQ/dscm)	0.20	0.20
	0.040*	0.40*
Mercury (µg/dscm)	120	120
(ppmw feed)	1.9	3
SVM (µg/dscm)	180	330
(lb/MM Btu feed)	6.2 x 10-5	7.6 x 10-4
LVM (µg/dscm)	54	56
(lb/MM Btu feed)	1.5 x 10-5	2.1 x 10-5
CO/THC (ppmv)	100/10	100/20
Total chlorine (ppmv)	86	120
Particulate matter (gr/dscf)	0.0023	0.028

* provided that the temperature to the air pollution control device is less than 400 °F

CRWI HWC MACT standards

<u>Hazardous waste lightweight aggregate kilns (40 CFR 63.1221)</u>. For this subcategory, both the feed standards and the stack gas concentration standards for SVM and LVM apply. This is an "and" standard, not an "or" standard.

Pollutant	New	Existing
Dioxin (ng TEQ/dscm)	0.20*	0.20*
Mercury (µg/dscm)	120	120
SVM (µg/dscm)	43	250
(lb/mm Btu feed)	3.7x10⁻⁵	3.0x10 ⁻⁴
LVM (µg/dscm)	110	110
(lb/mm Btu feed)	3.3x10⁻⁵	9.5x10 ⁻⁵
CO/THC (ppmv)	100/20	100/20
Total chlorine (ppmv)	600	600
Particulate matter (gr/dscf)	0.0098	0.025

* or rapid quench (no numerical standard)