

MEMBER COMPANIES

Clean Harbors Environmental Services Dow Chemical U.S.A. E. I. Du Pont de Nemours Eastman Chemical Company INVISTA S.àr.I. 3M Ross Incineration Services, Inc. Veolia ES Technical Services, LLC

GENERATOR MEMBERS

Eli Lilly and Company

ASSOCIATE MEMBERS

AECOM B3 Systems CH2M HILL Compliance Strategies & Solutions Coterie Environmental, LLC Focus Environmental, Inc. Foster Wheeler USA Franklin Engineering Group, Inc. Leidos METCO Environmental, Inc. SGS Analytical Perspectives, LLC Strata-G, LLC TestAmerica Laboratories, Inc. TRC Environmental Corporation URS Corporation

INDIVIDUAL MEMBERS

Ronald E. Bastian, PE Ronald O. Kagel, PhD

ACADEMIC MEMBERS

(Includes faculty from:)

Clarkson University Colorado School of Mines Lamar University Louisiana State University Mississippi State University New Jersey Institute of Technology University of California – Berkeley University of Dayton University of Maryland University of Maryland University of Utah

44121 Harry Byrd Highway, Suite 225 Ashburn, VA 20147

Phone: 703-431-7343 E-mail: mel@crwi.org Web Page: http://www.crwi.org EPA Docket Center EPA West (Air Docket) U. S. Environmental Protection Agency Mailcode: 2822T 1200 Pennsylvania Ave, NW Washington, DC 20460

Attn: Docket ID No. EPA-HQ-OAR-2012-0133

The Coalition for Responsible Waste Incineration (CRWI) appreciates the opportunity to submit comments on *National Emissions Standards for Hazardous Air Pollutants: Generic Maximum Control Technology Standards; and Manufacture of Amino/Phenolic Resins; Proposed Rule.* 79 Fed. Reg. 1,676 (January 9, 2014). CRWI is a trade association comprised of 26 industry members.

CRWI requests that the Agency modify the affirmative defense provision as specified below to make them more workable.

- 1. The definition of malfunction in this proposed rule is internally inconsistent and not consistent with the definition in the general provisions, making the Agency's proposed language arbitrary and capricious.
- 2. The proposed affirmative defense language is internally inconsistent and is potentially misleading, making the Agency's proposed language arbitrary and capricious.

Thank you for the opportunity to comment on this proposed rule. If you have any questions, please contact me at (703-431-7343 or mel@crwi.org).

Sincerely yours,

Mehn Eken

Melvin E. Keener, Ph.D. Executive Director

cc: CRWI members N. Parsons, EPA March 10, 2014

Specific comments

1. The definition of malfunction in this proposed rule is not consistent with the definition in the general provisions, making the Agency's proposed language arbitrary and capricious.

In the first sentence of § 63.1100 (h) (79 Fed. Reg. at 1,720) and § 63.1400(l) (79 Fed. Reg. at 1,726), the regulatory language states that an affirmative defense can be asserted for violations that are caused by a malfunction as defined in 40 CFR 63.2. The definition in 40 CFR 63.2 is as follows.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control and monitoring equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

In paragraphs (h)(1)(i)(A) and (I)(1)(i)(A), the regulations state that an affirmative defense can be asserted if the violation was caused by "a sudden, infrequent, and unavoidable failure..."

EPA appears to have two different definitions of malfunctions. The General Provisions uses the phrase "not reasonably preventable" while the language in (h)(1)(i)(A) and (l)(1)(i)(A) uses the word "unavoidable." That phrase and word do not have the same meaning, giving the appearance that the Agency is using two different definitions for a malfunction. In addition, replacing "not reasonably preventable" with "unavoidable" makes the bar for the use of an affirmative defense impossible to reach because reasonableness is removed from the evaluation. Almost any event can be "avoided" by taking extreme and unreasonable action. For example, a facility can eliminate <u>all</u> malfunctions by ceasing to operate. This drastic approach, however, is unreasonable and certainly not the intended outcome of MACT regulation. No one, we hope, would argue that facilities should take unreasonable steps to eliminate malfunctions.

All equipment ultimately will fail. For example, if a car battery weakens over time ahead of its expected life and then fails without notice, a reasonable person would consider that a malfunction even knowing that a battery will ultimately fail. There are steps a prudent person would take to prevent catastrophic failure (e.g., investigating sluggishness at starting, especially in cold weather) but it is not unknown for a battery to fail suddenly and with no advance warning, even when very new. Thus it can never be totally preventable, even if you replaced it with a new battery every month (which is not reasonable). Another example might be rotating equipment that gives an indication of vibration. If left undisturbed, it may or may not become a problem. Certain adjustments can often be made to improve the situation to normal levels of vibration. Those adjustments can also lead to failure, but there is no way to know the outcome in advance. Based on the knowledge of the individual piece of equipment, a company may choose to act or not. That does not mean negligence necessarily existed if it failed before expected or even if there was some related information that could have indicated possible failure.

The question is not whether all equipment will fail because it will. The question is whether it will fail during operation, and what can be done about that. A good predictive and preventative maintenance program is designed to use the best knowledge available to detect or predict future failures in a reasonable manner in order to prevent otherwise unanticipated and undesired failures. Sometimes run-tofailure is the best approach because there is no way to prevent a failure and the outcome is not serious (e.g., a light bulb – unless in a critical application). In other cases (like bearings) vibration analysis can be used to monitor equipment degradation over time so that replacement can be conducted at a reasonable time before catastrophic failure occurs. At times there is no reliable way to predict a certain failure mode and a "sudden and unanticipated" (and undesirable) failure of a component will occur. This will happen regardless of how well a predictive and preventative maintenance program is being implemented (e.g., o-ring failures in the Space Shuttle program). No program can be 100% accurate at achieving this goal. That means that many unanticipated and sudden failures can be and are prevented - but not all of them. We are not trying to argue that failures are acceptable, but that failures can never be 100% prevented and therefore "unavoidable." We agree that a reasonable level of care is to be expected of facilities in executing their preventive maintenance programs to prevent as many failures as reasonably possible.

As written, the proposed use of an affirmative defense requires the facility to show that no action could have foreseen or prevented the malfunction. This essentially requires the facility to enumerate all possible preventive measures and demonstrate that none of them would be effective. How can that burden be met? It is not possible to know the outcome of a choice that is not made. In the example of the vibrating rotating equipment given above, how could a facility show that making an adjustment would not have prevented the malfunction, if they chose not to make one? If they did make an adjustment, and a malfunction occurred soon after, how could they show that no adjustment or a different adjustment would not have prevented the malfunction? The burden to demonstrate the outcomes from a myriad of counterfactual alternate realities is impossible to meet.

The correct way to show reasonableness is to identify the steps that were taken in the attempts to minimize malfunctions. The facility should be required to show that it had trained personnel, written operating and maintenance procedures, and that it followed those procedures. The facility's actions should be judged against a standard of care and competence based on normal procedures for that industry sector. If the facility is doing the right things, then they have shown they are actively working to minimize malfunctions.

Our point with these examples is that it is impossible to completely avoid malfunctions. A facility can minimize them but they cannot be entirely avoided. Using the term "unavoidable" without including "reasonably" creates a bar that cannot be reached.

CRWI believes that it is inappropriate to have different definitions of malfunction and requests that the Agency revise the regulatory language in §§ 63.1100(h)(1)(i)(A) and 63.1400(I)(1)(i)(A) to reflect the General Provisions definition of a malfunction which has been in force for many years.

The proposed affirmative defense language is internally inconsistent and is potentially misleading, making the Agency's proposed language arbitrary and capricious.

CRWI suggests the following modifications to the affirmative defense language to make it more usable, logical, and consistent with its purpose. CRWI understands that most of the provisions EPA has proposed for the affirmative defense comes from earlier guidance memos. Because these provisions were in guidance, the Agency did not need to be careful of the wording as guidance does not have the weight of regulation. However, if the Agency wants to codify this guidance into regulatory language, several changes are needed.

- a. The language in the provision is contradictory. In §§ 63.1100(h)(1) and 63.1400(l)(1), the phrase "preponderance of evidence" is used while later in paragraph (C), the language refers to "any activity." This same trend occurs in paragraphs (v) "All possible," (vi) "All," and (viii) "At all times." These phrases are inconsistent with the burden of proof the Agency is requiring since the term "preponderance" does not mean all of the time. CRWI suggests that the phrase "preponderance of evidence" is adequate and the references to "all" and "any" in the later paragraphs should be modified.
- b. To many engineers and some regulators, the term "root cause analysis" implies a very specific formal process. For many malfunctions, the cause is immediately obvious and a formal process for determining the cause is not needed. When a malfunction occurs, the expectation is that the facility will correct the problem as quickly as possible and return to their operating window. A formal root cause analysis is typically limited to very significant events or repeat events. For example, if a thermocouple fails, the most likely cause is a bad thermocouple. The first response is to simply replace the thermocouple. However, if the replacement thermocouple fails within a short period of time, then something else may be causing that event to occur and a more detailed analysis may be needed. It may take several failures before the real cause is identified. Here a formal root cause analysis may be needed, but it certainly is not needed to replace the first failed thermocouple.

The Agency's proposed language assumes that all malfunctions are equally significant and need an identical degree of investigation. For example, a missing data point due to a malfunction of the data acquisition system is not as significant as a power failure or a catastrophic event such as fire or explosion. CRWI believes that a formal root cause analysis should only be used when other reasonable methods fail to show what caused the malfunction or when the serious nature of an event might make such an analysis necessary. Moreover, other tools may be more appropriate (e.g., failure mode and effect, fault tree, etc.) or more powerful tools may be introduced in the future. The facility is the only one that can and should decide what tool to use to determine the cause of the malfunction.

Part of this problem may be in communications. To some companies and potentially to some regulators, the term "root cause analysis" implies a very specific formal process. There are several techniques that may be called "root cause analysis," depending on the author and industry. If EPA intends for the facility to investigate and fix the source of the malfunction so that it is less likely to recur, CRWI supports that concept but suggests that the Agency use an alternative term that does not carry a specific meaning. However, if the Agency envisions a formal process for determining the root cause for every malfunction, no matter how simple, CRWI believes this is unnecessary and would result in excess efforts with no environmental gains.

- c. As facilities and EPA move toward electronic recordkeeping, it does not make sense to require keeping a "properly signed, contemporaneous operating logs" as a requirement for an affirmative defense. There are a number of electronic methods for maintaining records currently available (and more will likely be available in the future). As such, we suggest modifying this provision.
- d. The proposed language requires a facility to eliminate the causes of malfunctions. This is an impossible task and is inconsistent with the concept of what constitutes a malfunction (which is an event that is either unavoidable or not reasonably preventable, depending upon which definition EPA is using). A facility cannot eliminate the causes for certain malfunctions (e.g., lightning strikes) and if it could, the event would not be a malfunction. We suggest changing the language to require facilities to find ways to mitigate future occurrences.

Based on the discussions above, CRWI suggests that EPA make the following modifications to the proposed regulatory language in §§ 63.1100(h) (79 Fed. Reg. at 1,720) to address the concerns mentioned above and to make an affirmative defense a more useful tool (using strikeout to show text deleted and <u>underline</u> to show text added).

63.1100. Applicability

(h) Affirmative defense for violation of emission standards during malfunction. In response to an action to enforce the standards set forth in this subpart, the owner or operator of an acrylic and modacrylic fiber production affected source or polycarbonate production affected source may assert an affirmative defense to a claim for civil penalties for violations of such standards that are caused by malfunction, as defined at 40 CFR 63.2. Appropriate penalties may be assessed if the owner or operator fails to meet their burden of proving all of the requirements in the affirmative defense. The affirmative defense shall not be available for claims for injunctive relief.

(1) Assertion of affirmative defense. To establish the affirmative defense in any action to enforce such a standard, the owner or operator must timely meet the reporting requirements in paragraph (h)(2) of this section, and must prove by a preponderance of evidence that:

(i) The violation:

(A) Was caused by a sudden, infrequent, and <u>unavoidable</u> <u>not reasonably</u> <u>preventable</u> failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner; and

(B) Could not have been <u>reasonably</u> prevented through careful planning, proper design or better operation and maintenance practices; and

(C) Did not stem from any an activity or event that could have been reasonably foreseen and avoided, or planned for; and

(D) Was not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and

(ii) Repairs were made as expeditiously as possible when a violation occurred; and

(iii) The frequency, amount, and duration of the violation (including any bypass) were minimized to the maximum extent practicable; and

(iv) If the violation resulted from a bypass of control equipment or a process, then the bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and

(v) All possible <u>Reasonable</u> steps were taken to minimize the impact of the violation on ambient air quality, the environment, and human health; and (vi) All emissions Emissions monitoring and control systems were kept in

operation if at all possible, consistent with safety and good air pollution control practices; and

(vii) All of the actions in response to the violation were documented by properly signed, contemporaneous operating logs; and

(viii) At all times, the <u>The</u> affected source was operated in a manner consistent with good practices for minimizing emissions; and

(ix) A written root cause analysis report has been prepared, the purpose of which is to determine, correct, and eliminate mitigate the primary causes of the malfunction and the violation resulting from the malfunction event at issue.

Facility personnel will determine the appropriate type of analysis required (may include but not limited to root cause analysis, failure mode and effect, fault tree,

etc.) to identify the cause of the malfunction. The analysis report shall also specify, using best monitoring methods and engineering judgment, the amount of any emissions that were the result of the malfunction.

Similar proposed regulatory language can be found at § 63.1400(I) (79 FR 1,726). CRWI suggest that EPA make the same modifications to that section.